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The two-dimensional problem of generating Cerenkov radiation in an Ideally 
conducting fluid and an Ideally conducting elastic conductor In a magnetic 
field by means of a moving mechanical Impulse travelling in the contact plane 
of media Is examined. The case of Isotropic action of primary magnetic field 
is studied. Solutions are given for the two-dimensional case by the method 
of characteristics without accounting for dispersion. 

In the first section Initial equations and boundary conditions are devel- 
oped . In the second section the case of supermagnetosonlc velocity in both 
media, In the third section the case of lntermagnetosonic ve1oClt.y In the 
elastic conductor and supermagnetosonic velocity in the fluid, and In the 
fourth section the case of supermagnetosonic velocity in the fluid and sub- 
magnetosonlc velocity in the elastic conductor (It Is assumed that the velo- 
city of transverse waves in the elastic body Is greater than the magnetosonic 
velocity In the fluid) are examined. 

1. An Ideal elastic conductor occupying the lower half-space (Flg.1) and 

an Ideally conducting compressible Ideal liquid L occupying the upper half- 

space will be examined. The normal force p acts 

on the surface of the elastic conductor. This 

normal force trayels with the velocity v, ln the 

direction of the x,-axis. The primary field acts 

isotropically In the direction of the x,-axis. 

We denote by IHI= me= H . The system of refer- 

ence is shown In Flg.1. The gravitational field 

In the fluid Is neglected. We will assume that 

the fluid Is lnltlally under tension to such an 

extent that it can sustain negative pressures. 

In addition, for the sake of definiteness, we 
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Fig. 1 

assume that 
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al” > a2 > a,* (1.1) 
a1 *2 = aI3 + ~2, a,*2 = ao2 + xo2 

al = (” tpzc )“’ , a2 = (+)‘I: 

%a -- @I2 
4r(p ' xo 

2-PQH2 
4npo 

Here a, is the velocity of the acoustic wave In the fluid, A and G 

are elastic constants of the elastic conductor, p and p. are densities 

of the elastic conductor and the fluid respectively, and )1 and k are 
magnetic permeabllltles of the elastic conducto?r and the fluid. 

Assumption (1.1) Is not essential, solution for ocher Inequalities Is 

snalogous . For simpllflcatlon we will set p II kb’ 1 In the #‘ollowlng mate- 

rlal. We will also take advantage of nonrelatlvlstlc equations for magneto- 

hydrodynamics [ 13 and for an elastic conductor (vn2 / ca < 1). According to 
[2] linearized equations of magnetoelastlclty for an Ideal elastic conductor 

and a fluid will have the form (1.2) 
az2V2u + (al* - a**) grad div u + &rot rot (ux H)l x H-g = 0 

where 

E = -;($ xH), h = rot (u x H) (4.3) 

uo2 grad div u’ + & [rot rot (u’ x H)] x H - $ = 0 (1.4) 
where 

E'S-$(!&H); h’ = rot (u’ x H) (1.5) 
Equations (1.2) and (1.4) were simpllfled with respect to b/at0 under 

the assumption that au/at”# 0 and aqk”# 0 . In the Case where I~l=&=H 
equations (i.2) and (1.4) acquire the form 

U,~V~U + (al** _ %*) grad div u - g = 0, ao*2 grad div u’ .Pu 
-m =o 

Boundary conditions on the surface of the half-space will have the form 

(1.7) 
~3030 + TaoI0 - aso - T&o = - ~8 (zlo + v,P), 03010 - - 0, U$O=l&' 

Here big Is the mechanical stress ln the elastic conducter, & Is the 

pressure ln the fluid, Tioko,_ and Tioko are Maxwell’s stress tensors in the 

solid body and ln the fluid. 

Maxwell's tensors are expressed ln the following formulas for )I = uOi 1 
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In the case where III1 -&= R, and after expressing h and ti through 

through u and u', conditions (1.7) take finally the form 

P (al*' - %Y ~lO,P + pal*2u,.,,. - po~*2ul.,lo - poa,*2u,o so = 

= - P8 (alo + @) 

(1.9) 
U1° 3 ,o+ U30,lO" 0, FP --up'=0 

It 1s assumed here that U20 = +'= 0 since In the case cf the two- 

dimensional problem stresses are independent of x,. 

Further, let us Introduce, analogously to [3], the followng potentials: 

UAO = @,V + y.30. Q? z-7 (Da0 - Y,p, u’ = grad g, (1.10) 

Then the system of equations (1.6) Is reduced to the follolng, separate 

for each potential, equations 

V2@ - --$ (r)JO~O = 0, $Y 

(1.11) 

VY - -0, v2q+$pJ.p=0 ,w - 

We Introduce a nt'r reference system (33 

51 = 51° + v,l", 53 = xg", t = to (1.12) 

W.e shall examine the established process, then Equations (1.11) and bound- 

ary conditions (1.9) will assume the form 

@),s.9 - %Q,,, = 0, \f),sa - a,2y,,, = 0, 'p,, - ac"cp 711 = 0 (1.13) 

(ala=voa/al+~--1, al~=voa/aza-i, ~a=voalap-i) 

P (al*” - 247 %l + P~l*2%.s - Po%*24:l - Po%*2%;, = - Pd (21) 

4,s + u3.1 = 0, 
(1.14) 

UQ - uQr = 0 

or 
P (al*" - 2%2) @,ll + Pal*2%3 - 2pa,2y,l, - p&~,,,- 

- Po%*%~ = - P6 (Xl) (1.15) 

2@,1.9 + ys3 - Y,,, = 0, a.3 - 'YJ -'pa = 0 

When, according to condition (l.l), the Inequality ha> a.,’ > ala 

Is satisfied, the case of supermegnetosonlc velocity In both media occurs for 
I(. vO> a, , the case of lntermagnetosonlc velocity In the elastic conductor and 

supermagn-tosonlc velocity In the fluid occurs for a1< vO< a,*; the case 
of submagnetosonlc velocity In the elastic conductor and supermagnetosonlc 

velocity In the fluid occurs for ago< v,,<ao . 

These three cases for intervals of velocity shange of mechanical Impulse 

IQ, are examined below; In the first of the& cases three cones of Cerenkov 

radzlatlon appear, two In the elastic conductor and one In the fluid, In the 

second case one cone appears in-the elastic conductor and one In the liquid, 

In the third case one cone appears in the liquid. 
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2. For supermagnetosonlc velocity in both media a,, a,, a2> 0 . We will 

seek solutions of Equations (1.13) lfi the form 

@ = @ (z1 --a$$, Y = Y (X1 -a&J, cp = cp (x1 + a&l) (2.1) 

For x3= 0 we find from the second, the third and the first boundary 

condition .(l.l5),.respectlvely, 

Here primes denote differentiation with respect to the argument (2.3) 
1 + a2 

iv = p [al*” (1 + al”) - 2u,2] v - 2fq%, - po%*2 (1 + %Y .y$g- 

Integrating the last equation of (2.2) we find 

‘4’ (21 - a 2x3) = $- H (x1 - pzz,) (fl is Heavlslde’s function) (2.4) 

The constant of integration is omitted: it can only introduce a constant 

displacement which will be unessential. 

In the hollowing (and also In later Sectlons)we will operate with dis- 

placements not defined exactly in this sense (the derivatives of displace- 

ment s , apparently, will be defined exactly). After computation of I’, - 

@’ and qp) are determined from the other two relationships of (2.1). Then 

the displacements ui and u,’ (j, = 1, 3) are determined with accuracy to 

arbitrary constants 

u 
1 

Ul ‘=_ ; ‘s H (x1 + q,z3) 

u = p 1 - cl22 

3 M L 
-H (21 - ~153) - H (21 - w3)] 

u3 
I_ 

p 'T H (x1 + a,& - -h,, 

(2.5) 

Components of field vectors in both media are found with the aid of (2.5) 

from Formulas (1.3) and (1.5) (It Is recalled that a(...)/at” must bereplaced 

after transformation by u0 a ( . . . )/ax, ) . From 

solutions of (2.5) It Is evident that for 

supermagnetosonlc velocity in both media 

three cones of Cerenkov radiation arise: 

two In the elastic conductor and one In the 

fluid (Fig.2). The case Is analogous for 

field components. It follows from solutions 

of (2.5) that the orders of magnitude of 
Fig. 2 deformations and velocity are pt/M and 

pv,b/M and, correspondingly, the orders of magnitude of perturbed magnetic 

and electrical fields In the region of cones are ,qpb/hf and Pfiv,b/oH ; in 



the determination of the order of magnitude the symbol b has the signifi- 

cance that it determines the influence function which on mult~pllcation by 

the general function and after integration yields the solution for a given 

loading and pertits to compare the orders of magnitude of parameters under 

examination, It follows from the discussion presented that when the loadings 

result in stresses of the order of the limit of elasticity in the elastic 

conductor, then the field intensities of Gerenkov radiaMon have practical 

orders of magnitude [3 and 41. 

3. Let us examine intermagnetosonic velocity of Impulse in the elastic 

conductor and supermagnetosonic velocity in the fluid. For construction of 

solutions in the case a,,* < a4 < V, < aI* we proceed analogously to the 

papers [3] and [k), i.e. we utilize solutions of Se&on 2 introducing in- 

stead of - at the quantity SF > 0 or Q = - f,BI .- ‘Ilen the first of 

Equations (1.13) becomes elliptical. 
. 

In connection with this and in accordance with [3] we dntroduoe instead 

of the function ~(2, -a,~,) Its analytical continuation in solutions (2.5) 

H (8 = H (x1 + @,Z,) = ~lnE+h-~lnr+l--~ (3.1) 
where 

g = x1 + ip,x, = reiQ (3.2) 
The function H(t) satisfies the elliptical equation for 9 and assumes 

the values of the Heaviside function along the real axis. After determining 

y and cp from boundary conditions OP appropriately selected aMilytlCal 

extensions, we compute the functions u and u’ . Retaining the real parts 

we obtain the desired solution to the problem. Solutions atisfy the equa- 

tions and the boundary conditions. After substituting a, by - t@, in the 

expression for I we obtain 

M = s1 + is, (3.3) 

Further 

1 
n, + in, 

Sl sa 
-= 

M 
al =sla+ q * 

n*=-- 
s1a + s28 

(3.4) 

From this, after computation of y and rp, according to (1.&5), and after 

substitutionint.o(l.lO),or directly from (2.5) on the basis of appropriately 

selected analytical ~ontlnuations,~d after separation of real parts,ue find 

(3.5) 



1052 5. lmiskl 

1% is evident from (3.5) that the solution in the elastic mcjciium and in 

the fluid consists of a stationary part and a cone of Cerenkov radiation. 
Stationary disturbances overtake the fronts of disturbances of Cerenkov radi- 
ation cones. The orders of magtitude of individual parameters of solutions 
correspond to those established In the previous section. 

The computation of field components In both media by means of relation- 
ships (1.3) and (1.5) is not presented here. 

4. Let ua examine 8ub~etosonic velocity of impulse in the elastic con- 
ductor and aupermagnetoeonic velocity In the fluid. Just a8 in Section 3 we 
introduce the following notation: 

@I = - i&, a, = - ipa (4.1) 

since equations for i and t will transform from hyperbolic to elliptical, 

Consequently we write in analogy to (4.1) 

Substitution of these expressions Znto (2.5) with correspondine, analytical 
continuations (or with fun&ions Y and cp determined from boundary condl- 
tions) leads to the following tie8ul.t after separation of real parts 

u1=P Ic 
i i 
n’ ~fnrl_ Pz1nr2]+n2[~(~-~)-P2(1-~)j 

US=P{nl[~(~_~)_(I_~)]+~[lnr2-~lInrl]} 

Solution (4.6) gives only one Cerenkov radiation cone In the fluid (and 
the stationary part). In the elastic medium the, solution has a stationary 

character (In aocordance with the fd.nd%ng that after a sufficiently long 
time Lnterval the process is eetabliahed). As before, the derivatives of 

(4.6) will be determdned unambigously; fieid vectors are computed from (1.3) 



aechudcU generation of Cercnkov radiation 1053 

and (1.5). As far as the orders of magnitude are concerned, remark6 In the 

previous section are applicable. 

The case of submagnetoeonlc velocity In the fluid (v, c cz ) Is not exam- 

ined since it does not yield radiation cones. The stationary solution 

this case is alao readily obtained on the basis of solution of (2.5). 

In 
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